User Tools

Site Tools


tests:collision:gc1_archive

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
tests:collision:gc1_archive [2014/10/22 10:14]
v.henault-brunet
tests:collision:gc1_archive [2015/09/01 10:33]
v.henault-brunet
Line 1: Line 1:
-====== ​Gaia Challenge 1 ======+====== ​GCI ======
  
 +===== Challenge 1: Equal mass clusters in a tidal field =====
  
-===== Other possible challenges =====+^ ^ ^  All Stars ^^^^ 1000 stars^^^^ 
 +^ Cluster ^ Method ​            ​^$M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$ ^ $M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$^ 
 +|1 | Isotropic King (linear dens) | $0.919$ |         | $1.190$ |           |  
 +|  | Isotropic King (log dens)    |         | $0.046$ | $1.61$ ​ |           |  
 +|  | Anisotropic Michie King      |         | $0.027$ | $1.55$ ​ |           ​| ​  
 +|  | $f_\nu$ ​             | $1.082$ |           | $1.134$ |           |  
 +|2 | Isotropic King (linear dens) | $0.875$ |           | $1.322$ |           |  
 +|  | Isotropic King (log dens)| ​      | $0.04$ | $1.752$ |           |  
 +|  | Anisotropic Michie King   ​| ​  ​| ​ $0.026$ | $1.618$ |           ​| ​  
 +|  | $f_\nu$ ​             | $1.023$ |           | $1.314$ |           |  
 +|3 | Isotropic King (linear dens) | $0.227$ |           | $6.839$ |           |  
 +|  | Isotropic King (log dens) |   | $0.28$ | $7.655$ |           |  
 +|  | Anisotropic Michie King   ​| ​  ​| ​          ​| ​          ​| ​          ​| ​  
 +|  | $f_\nu$ ​             | $0.259$ |           | $8.225$ |           ​| ​
  
-==== Pal 5 model from Andreas Kuepper in streams section ====+^ Cluster ​ ^ Plots ^ 
 +|1 | Isotropic King vs $f_\nu$ |{{:​data:​ch1_1_new.png?​250}} | 
 +|  | Anisotropic Michie King   ​|{{:​t1c1.png?​250}} |   
 +|2 | Isotropic King vs $f_\nu$ ​          | {{:​data:​collisional_Ch1_2.png?​250}} |  
 +|  | Anisotropic Michie King   | {{:​data:​t1c2.png?​250}} |   
 +|3 | Isotropic King vs $f_\nu$ |   ​{{:​data:​collisional_Ch1_3.png?​250}}|  
 +|  | Anisotropic Michie King   | {{:​data:​t1c3.png?​250}} |    ​
  
-Same analyses as in Challenge 2 and 3, but with cluster on eccentric orbit and "​polluting"​ stars from tidal tails. The models ​posted in the streams section were not evolved ​with stellar evolution ​and for a Hubble timebut Andreas sent me files for that. Will upload them if there is interest.+   
 +===== Challenge 2: Isolated ​models with stellar evolution ​===== 
 +Active participants:​ Alice Zocchi, Antonio Sollima, Matt Walker, ,  Laura Watkins, Glenn van de VenPascal Steger?
  
-==== Models with initial rotation ==== +How important is the effect of mass segregation?​
-Different models with angular momentum are within ​the group: collapsing spheres, cold fractal collapse, cluster mergers. ​+
  
 +  - How correct is the assumption of energy equipartition (i.e. multi-mass King models)?
 +  - How different are the fits when considering:​ 1.) all stars, 2.) only visible stars
 +  - Is it better to consider luminosity weighted profiles, or number density profiles?
 +  - How much can we do with 2 velocity components instead of 1 (i.e. with Gaia data)?
  
-=== Collapse of homogeneous spheres with angular momentum === 
-Below snapshots of 3 cold(ish) collapses of homogeneous spheres with angular momentum. Initial virial ratios and angular momentum were taken from the 3 models described in Gott (1972). The models contain 2e5 stars, a Kroupa IMF between 0.1 and 100 Msun and snapshots are at t=30 [NBODY]. The amount of rotation is quantified with Peebles $\lambda$ parameter in the title: ​ 
  
-  - {{:data:​rot_collapse_lam0.127.gz}} NEW! Tuesday August 20 +==== Description of the models====
-  - {{:​data:​rot_collapse_lam0.168.gz}} NEW! Tuesday August 20 +
-  - {{:​data:​rot_collapse_lam0.212.gz}} NEW! Tuesday August 20  +
-[[http://​personal.ph.surrey.ac.uk/​~mg0033/​movies/​lam212.avi|visualisation]]+
  
 +(Based on simulations ran by Mark Gieles, not published)\\
 +Here we consider 2 clusters:
  
-=== Mergers === +  - IC: Cored gamma/eta modelN = 1e5, Kroupa ​(2001) mass function ​between 0.1-100 Msun. 
-Merger between 2 clusters of equal massequal containing ​1e5 starsKroupa ​IMF between 0.1 and 100 Msun. The initial orbit of the cluster pair had zero energy ​and different angular momentumThe  +  - No primordial binaries, no central black hole, no tidal. 
-  - {{:data:​rot_merger_lam0.128.gz}} NEW! Tuesday August 20+  - Stellar evolution ​and mass-loss according to Hurley et al(2000, 2002) 
 +  - Two values for the metallicity of the stars[Fe/H] = -2.0 and 0.0 (solar)
  
-For both collapse and mergers collapse contain:+Below are 2 snapshots at an age of roughly 12 Gyr. The columns are:
  
-^ $M$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^  +^ $m   ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^ $\log T_{EFF}^ $M_{bol}$ ^ KSTAR ^ 
-| [$M_\odot$]  | [NBODY] |||    [NBODY  ​|||        +| [Msun] | [PC] |||  [km s-1 ||| [K] |[MAG]|
  
-=== Collapse of non-homogeneous spheres with angular momentum ===+KSTAR is the stellar type and can be between 0 and 22 and the meanings are given below in the Appendix.
  
-(Based on simulations ran by Anna Lisa Varri, see [[http://adsabs.harvard.edu/​abs/​2013AAS...22211703G|Ref1 ]] [[http://​adsabs.harvard.edu/​abs/​2013AAS...22211702T|Ref2]])+  - {{:ETA3_SEV_N100K_ISO_FEH-0.0_T12656.gz}} 
 +  - {{:ETA3_SEV_N100K_ISO_FEH-2.0_T12892.gz}} 
  
-Below snapshots of two cold(ish) collapses of isolated spheres with N=64k, equal mass stars, non-homogeneous initial density distribution (fractal dimension D = 2.8, 2.4, as in the file name), and approximate solid-body rotation. The configurations are characterized by the same **initial** values of virial ratio and global angular momentum as in the homogeneous case #3 (with  $\lambda=0.212$). The simulations have been performed with [[http://​www.sns.ias.edu/​~starlab/​|STARLAB]] and the snapshots are taken at T=20 [NBODY].+Cluster properties:
  
-   {{:​data:​rot_collapse_fracd2.4.gz}} NEW! Tuesday August 20 +^ Cluster ^ Mass      ^ Radii ^^^^ rms velocities^^^^ 
-   - {{:​data:​rot_collapse_fracd2.8.gz}} NEW! Tuesday August ​20+   | |$r_{\rm h}$(3D,​M)|$r_{\rm h}$(2D,​L)|$r_{\rm h}$(2D,​M)|$r_{\rm h}$(2D,​N)|$v_{\rm rms}$|$v_{\rm rms}$(Giants)| 
 +|    |[$M_\odot$] ​    ​| ​     [pc]       ​| ​    ​[pc] ​       | [pc]    | [pc] |[km/​s]|[km/​s]| 
 +|1   |$3.34\times10^4$| 9.73            | 3.33            | 7.27    | 10.0 | 2.39 | 2.52| 
 +|2   ​|$3.33\times10^4$| 10.9            | 4.71            | 8.20    | 11.3 | 2.30 | 2.67|
  
-The file header containsN, T, coordinates and velocities of the center of mass. The file format is as follow:+Density distribution for cluster 2{{:data:​collisional_rho.png?​250}}
  
-^ $ID$ ^ $M$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^  +==== (PRELIMINARY) RESULTS: ====
-|  | [NBODY] ​ | [NBODY] |||    [NBODY] ​  ​||| ​       ​+
  
 +^ ^ ^  All Stars ND ^^^ All Stars Mass^^^ All Stars Lum^^^
 +^ Cluster ^ Method ​            ​^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$R_{\rm h}$
 +|1 | isotropic King            | $3.17*10^4$ ​ | $11.76$ | $8.67$ | $3.03*10^4$ | $9.06$ | $6.66$ | $3.07*10^4$ | $8.63$ | $6.39$ | 
 +|  | Multi-mass King           ​| ​  ​| ​          ​| ​   |           ​|  ​
 +|  | $f_\nu$ ​                  | $3.80*10^4$ ​ | $12.88$ | $9.66$ | $3.54*10^4$ | $9.00$ | $6.73$ | $3.08*10^4$ | $3.31$ | $2.48$ |
 +|  | Parametric Jeans          |   ​| ​          ​| ​   |           ​| ​
 +|  | Discrete Jeans            |   ​| ​          ​| ​   |           ​| ​
 +|2 | Isotropic King            | $3.07*10^4$ ​ | $14.27$ | $10.55$ | $2.72*10^4$ | $11.69$ | $8.32$ | $2.93*10^4$ | $11.13$ | $8.19$ |
 +|  | Multi-mass ​ King          |   ​| ​          ​| ​   |           ​|  ​
 +|  | $f_\nu$ ​                  | $3.71*10^4$ | $14.66$ | $11.03$ | $3.66*10^4$ | $11.07$ | $8.26$ | $3.30*10^4$ | $6.08$ | $4.50$ |
 +|  | Parametric Jeans          |   ​| ​          ​| ​   |           ​| ​
 +|  | Discrete Jeans            |   ​| ​          ​| ​   |           ​| ​
  
-==== More ideas (but no mock data for these yet) ==== 
  
-  ​What is the effect ​of binary stars+ 
-  - Is there a dynamical ​"smoking gun" ​for an intermediate mass black hole?  +===== Challenge 3: Clusters in tidal fields with stellar evolution ===== 
-  ​+(Simulations ran and kindly made available by Holger Baumgardt)\\ 
 + 
 +Here we consider 2 clusters which are slightly more realistic:​ 
 + 
 +  ​IC: King (1966) W_0 = 5 model, N = 131072, Kroupa (2001) mass function between 0.1-15 Msun (no black-holes). 
 +  - No primordial binaries, no central black hole, circular orbit in logarithmic halo with V = 220 km/s. 
 +  - Z = 0.001 
 +  - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002) 
 +  - Two Galactocentric radii: 8.5 kpc and 15 kpc. 
 + 
 + 
 +Below are 2 snapshots at an age of roughly 10 Myr, 100 Myr, 1Gyr and 12 Gyr. The columns are the same as in Challenge 2. 
 + 
 +  - {{:​data:​W05_N131K_RG8.5_FEH-0.0_T10.gz}} UPDATED! Thursday August 22 
 +  - {{:​data:​W05_N131K_RG8.5_FEH-0.0_T100.gz}} UPDATED! Thursday August 22 
 +  - {{:​data:​W05_N131K_RG8.5_FEH-0.0_T1000.gz}} UPDATED! Thursday August 22 
 +  - {{:​W05_N131K_RG8.5_FEH-0.0_T12000.gz}} 
 +  - {{:​data:​W05-N131K_RG15_FEH-0.0.T10.gz}} NEW! Tuesday August 20 
 +  - {{:​data:​W05-N131K_RG15_FEH-0.0.T100.gz}} NEW! Tuesday August 20 
 +  - {{:​data:​W05-N131K_RG15_FEH-0.0.T1000.gz}} NEW! Tuesday August 20 
 +  - {{:​W05_N131K_RG15_FEH-0.0_T12000.gz}} 
 + 
 +Questions are the same as in Challenge 2, and in addition: 
 +  - Is the presence ​of the tidal field affecting the velocity anisotropy in the outer parts
 +  - Can the mass segregation be reproduced by multi-mass King models?  
 + 
 + ​Example of the velocity dispersion difference of different mass components:​ 
 +{{:​data:​sig2ratio.png?​250}} 
 + 
 +Different models to fit: 
 +  - $f_\nu$ 
 +  - Multi-mass King 
 +  - Discrete ​"Jeans like" ​modelling 
 +  - DF fitting (Mark W?) 
 + 
 +==== Results: ==== 
 +Using all stars: 
 +^ ^ ^ ^  All Stars ^^^^ 1000 stars^^^^ 
 +^ Cluster ^ Snapshot ^ Method ​            ​^$M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$ ^ $M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$^ 
 +|1 | 1 | Isotropic King   ​| ​ |         | |           |  
 +|  | 1 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 1 | $f_\nu$ ​             |  |           | |           |  
 +|  | 1 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|1 | 2 | Isotropic King   ​| ​ |         | |           |  
 +|  | 2 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 2 | $f_\nu$ ​             |  |           | |           |  
 +|  | 2 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|1 | 3 | Isotropic King   ​| ​ |         | |           |  
 +|  | 3 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 3 | $f_\nu$ ​             |  |           | |           |  
 +|  | 3 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|1 | 4 | Isotropic King   ​| ​ |         | |           |  
 +|  | 4 | Multimass Michie King | $2.118$ |  | $11.353$ |  |   
 +|  | 4 | $f_\nu$ ​             |  |           | |           |  
 +|  | 4 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 1 | Isotropic King   ​| ​ |         | |           |  
 +|  | 1 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 1 | $f_\nu$ ​             |  |           | |           |  
 +|  | 1 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 2 | Isotropic King   ​| ​ |         | |           |  
 +|  | 2 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 2 | $f_\nu$ ​             |  |           | |           |  
 +|  | 2 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 3 | Isotropic King   ​| ​ |         | |           |  
 +|  | 3 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 3 | $f_\nu$ ​             |  |           | |           |  
 +|  | 3 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 4 | Isotropic King   ​| ​ |         | |           |  
 +|  | 4 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 4 | $f_\nu$ ​             |  |           | |           |  
 +|  | 4 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 + 
 +Plots 
 +^ Cluster ​ ^ Plots ^ 
 +|1 | 1 | Isotropic King vs $f_\nu$ | | 
 +|  | 1 | Multimass Michie King   | |   
 +|  | 1 | Discrete modelling ​       | |  
 +|1 | 2 | Isotropic King vs $f_\nu$ | | 
 +|  | 2 | Multimass Michie King   | |   
 +|  | 2 | Discrete modelling ​       | |  
 +|1 | 3 | Isotropic King vs $f_\nu$ | | 
 +|  | 3 | Multimass Michie King   | |   
 +|  | 3 | Discrete modelling ​       | |  
 +|1 | 4 | Isotropic King vs $f_\nu$ | | 
 +|  | 4 | Multimass Michie King   ​|{{:​data:​t3c1.png?​250}} |   
 +|  | 4 | Discrete modelling ​       | |  
 +|2 | 1 | Isotropic King vs $f_\nu$ | | 
 +|  | 1 | Multimass Michie King   | |   
 +|  | 1 | Discrete modelling ​       | |  
 +|2 | 2 | Isotropic King vs $f_\nu$ | | 
 +|  | 2 | Multimass Michie King   | |   
 +|  | 2 | Discrete modelling ​       | |  
 +|2 | 3 | Isotropic King vs $f_\nu$ | | 
 +|  | 3 | Multimass Michie King   | |   
 +|  | 3 | Discrete modelling ​       | |  
 +|2 | 4 | Isotropic King vs $f_\nu$ | | 
 +|  | 4 | Multimass Michie King   | |   
 +|  | 4 | Discrete modelling ​       | |  
 + 
 +==== Results: ==== 
 +Velocity dispersion for different mass species: the multi-mass King models assume that the product $m\sigma_K^2$= constant. The parameters $\sigma_K$ is not exactly the velocity dispersion.  
tests/collision/gc1_archive.txt · Last modified: 2015/09/01 10:33 by v.henault-brunet