User Tools

Site Tools


tests:collision:gc1_archive

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
tests:collision:gc1_archive [2014/10/22 15:59]
v.henault-brunet
tests:collision:gc1_archive [2015/09/01 11:33]
v.henault-brunet
Line 1: Line 1:
-====== ​Gaia Challenge 1 ======+====== ​GCI ======
  
- +====Challenge 1: Equal mass clusters in a tidal field =====
-==== Preliminary results from Gaia Challenge 1 workshop ​==== +
- +
-=== Challenge 1 ====+
  
 ^ ^ ^  All Stars ^^^^ 1000 stars^^^^ ^ ^ ^  All Stars ^^^^ 1000 stars^^^^
Line 21: Line 18:
 |  | $f_\nu$ ​             | $0.259$ |           | $8.225$ |           ​| ​ |  | $f_\nu$ ​             | $0.259$ |           | $8.225$ |           ​| ​
  
-Plots 
 ^ Cluster ​ ^ Plots ^ ^ Cluster ​ ^ Plots ^
 |1 | Isotropic King vs $f_\nu$ |{{:​data:​ch1_1_new.png?​250}} | |1 | Isotropic King vs $f_\nu$ |{{:​data:​ch1_1_new.png?​250}} |
Line 28: Line 24:
 |  | Anisotropic Michie King   | {{:​data:​t1c2.png?​250}} |  ​ |  | Anisotropic Michie King   | {{:​data:​t1c2.png?​250}} |  ​
 |3 | Isotropic King vs $f_\nu$ |   ​{{:​data:​collisional_Ch1_3.png?​250}}| ​ |3 | Isotropic King vs $f_\nu$ |   ​{{:​data:​collisional_Ch1_3.png?​250}}| ​
-|  | Anisotropic Michie King   | {{:​data:​t1c3.png?​250}} |  +|  | Anisotropic Michie King   | {{:​data:​t1c3.png?​250}} |    
  
 +  ​
 +===== Challenge 2: Isolated models with stellar evolution =====
 +Active participants:​ Alice Zocchi, Antonio Sollima, Matt Walker, ,  Laura Watkins, Glenn van de Ven, Pascal Steger?
  
 +How important is the effect of mass segregation?​
  
 +  - How correct is the assumption of energy equipartition (i.e. multi-mass King models)?
 +  - How different are the fits when considering:​ 1.) all stars, 2.) only visible stars
 +  - Is it better to consider luminosity weighted profiles, or number density profiles?
 +  - How much can we do with 2 velocity components instead of 1 (i.e. with Gaia data)?
  
-===== Other possible challenges ===== 
  
-==== Pal 5 model from Andreas Kuepper in streams section ​====+==== Description of the models: ​====
  
-Same analyses as in Challenge 2 and 3but with cluster on eccentric orbit and "​polluting"​ stars from tidal tails. The models posted in the streams section were not evolved with stellar evolution and for a Hubble time, but Andreas sent me files for that. Will upload them if there is interest.+(Based on simulations ran by Mark Gieles, not published)\\ 
 +Here we consider 2 clusters:
  
-==== Models with initial rotation ==== +  - IC: Cored gamma/eta model, N 1e5, Kroupa (2001) mass function between 0.1-100 Msun. 
-Different models with angular momentum are within the group: collapsing spherescold fractal collapsecluster mergers+  - No primordial binariesno central black holeno tidal. 
 +  - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002) 
 +  - Two values for the metallicity of the stars: [Fe/H] = -2.0 and 0.0 (solar)
  
 +Below are 2 snapshots at an age of roughly 12 Gyr. The columns are:
  
-=== Collapse of homogeneous spheres with angular momentum === +^ $m$    ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^ $\log T_{EFF}$ ^ $M_{bol}$ ^ KSTAR ^ 
-Below snapshots of 3 cold(ish) collapses of homogeneous spheres with angular momentum. Initial virial ratios and angular momentum were taken from the 3 models described in Gott (1972). The models contain 2e5 stars, a Kroupa IMF between 0.1 and 100 Msun and snapshots are at t=30 [NBODY]. The amount of rotation is quantified with Peebles $\lambda$ parameter in the title: ​+| [Msun] | [PC|||  [km s-1]  ||| [K] |[MAG]|
  
-  - {{:​data:​rot_collapse_lam0.127.gz}} NEW! Tuesday August 20 +KSTAR is the stellar type and can be between 0 and 22 and the meanings are given below in the Appendix.
-  - {{:​data:​rot_collapse_lam0.168.gz}} NEW! Tuesday August 20 +
-  - {{:​data:​rot_collapse_lam0.212.gz}} NEW! Tuesday August 20  +
-[[http://​personal.ph.surrey.ac.uk/​~mg0033/​movies/​lam212.avi|visualisation]]+
  
 +  - {{:​ETA3_SEV_N100K_ISO_FEH-0.0_T12656.gz}}
 +  - {{:​ETA3_SEV_N100K_ISO_FEH-2.0_T12892.gz}} ​
  
-=== Mergers === +Cluster properties:
-Merger between 2 clusters of equal mass, equal containing 1e5 stars, a Kroupa IMF between 0.1 and 100 Msun. The initial orbit of the cluster pair had zero energy and different angular momentum. The  +
-  - {{:data:​rot_merger_lam0.128.gz}} NEW! Tuesday August 20+
  
-For both collapse and mergers collapse contain:+^ Cluster ^ Mass      ^ Radii ^^^^ rms velocities^^^^ 
 +|    | |$r_{\rm h}$(3D,​M)|$r_{\rm h}$(2D,​L)|$r_{\rm h}$(2D,​M)|$r_{\rm h}$(2D,​N)|$v_{\rm rms}$|$v_{\rm rms}$(Giants)| 
 +|    |[$M_\odot$] ​    ​| ​     [pc]       ​| ​    ​[pc] ​       | [pc]    | [pc] |[km/​s]|[km/​s]| 
 +|1   ​|$3.34\times10^4$| 9.73            | 3.33            | 7.27    | 10.0 | 2.39 | 2.52| 
 +|2   ​|$3.33\times10^4$| 10.9            | 4.71            | 8.20    | 11.3 | 2.30 | 2.67|
  
-^ $M$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^  +Density distribution for cluster 2: {{:​data:​collisional_rho.png?​250}}
-| [$M_\odot$] ​ | [NBODY] |||    [NBODY] ​  ​||| ​       ​+
  
-=== Collapse of non-homogeneous spheres with angular momentum ​===+==== (PRELIMINARY) RESULTS: ====
  
-(Based on simulations ran by Anna Lisa Varri, see [[http://​adsabs.harvard.edu/​abs/​2013AAS...22211703G|Ref1 ]] [[http://​adsabs.harvard.edu/​abs/​2013AAS...22211702T|Ref2]])+^ ^ ^  All Stars ND ^^^ All Stars Mass^^^ All Stars Lum^^^ 
 +^ Cluster ^ Method ​            ​^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$R_{\rm h}$ 
 +|1 | isotropic King            | $3.17*10^4$ ​ | $11.76$ | $8.67$ | $3.03*10^4$ | $9.06$ $6.66$ | $3.07*10^4$ | $8.63$ | $6.39$ |  
 +|  | Multi-mass King           ​| ​  ​| ​          ​| ​   |           ​| ​  
 +|  | $f_\nu$ ​                  | $3.80*10^4$ ​ | $12.88$ | $9.66$ | $3.54*10^4$ | $9.00$ | $6.73$ | $3.08*10^4$ | $3.31$ | $2.48$ | 
 +|  | Parametric Jeans          |   ​| ​          ​| ​   |           |  
 +|  | Discrete Jeans            |   ​| ​          ​| ​   |           |  
 +|2 | Isotropic King            | $3.07*10^4$ ​ | $14.27$ | $10.55$ | $2.72*10^4$ | $11.69$ | $8.32$ | $2.93*10^4$ | $11.13$ | $8.19$ | 
 +|  | Multi-mass ​ King          |   ​| ​          ​| ​   |           ​| ​  
 +|  | $f_\nu$ ​                  | $3.71*10^4$ | $14.66$ | $11.03$ | $3.66*10^4$ | $11.07$ | $8.26$ | $3.30*10^4$ | $6.08$ | $4.50$ | 
 +|  | Parametric Jeans          |   ​| ​          ​| ​   |           |  
 +|  | Discrete Jeans            |   ​| ​          ​| ​   |           
  
-Below snapshots of two cold(ish) collapses of isolated spheres with N=64k, equal mass stars, non-homogeneous initial density distribution (fractal dimension D = 2.8, 2.4, as in the file name), and approximate solid-body rotation. The configurations are characterized by the same **initial** values of virial ratio and global angular momentum as in the homogeneous case #3 (with  $\lambda=0.212$). The simulations have been performed with [[http://​www.sns.ias.edu/​~starlab/​|STARLAB]] and the snapshots are taken at T=20 [NBODY]. 
  
-   - {{:​data:​rot_collapse_fracd2.4.gz}} NEW! Tuesday August 20 
-   - {{:​data:​rot_collapse_fracd2.8.gz}} NEW! Tuesday August 20 
  
-The file header containsN, T, coordinates ​and velocities of the center of mass. The file format is as follow:+===== Challenge 3Clusters in tidal fields with stellar evolution ===== 
 +(Simulations ran and kindly made available by Holger Baumgardt)\\
  
-^ $ID$ ^ $M$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^  +Here we consider 2 clusters which are slightly more realistic:
-|  | [NBODY] ​ | [NBODY] |||    [NBODY] ​  ​||| ​       ​+
  
 +  - IC: King (1966) W_0 = 5 model, N = 131072, Kroupa (2001) mass function between 0.1-15 Msun (no black-holes).
 +  - No primordial binaries, no central black hole, circular orbit in logarithmic halo with V = 220 km/s.
 +  - Z = 0.001
 +  - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002)
 +  - Two Galactocentric radii: 8.5 kpc and 15 kpc.
  
-==== More ideas (but no mock data for these yet) ==== 
  
-  ​What is the effect ​of binary stars+Below are 2 snapshots at an age of roughly 10 Myr, 100 Myr, 1Gyr and 12 Gyr. The columns are the same as in Challenge 2. 
-  - Is there a dynamical ​"smoking gun" ​for an intermediate mass black hole?  + 
-  ​+  ​{{:​data:​W05_N131K_RG8.5_FEH-0.0_T10.gz}} UPDATED! Thursday August 22 
 +  - {{:​data:​W05_N131K_RG8.5_FEH-0.0_T100.gz}} UPDATED! Thursday August 22 
 +  - {{:​data:​W05_N131K_RG8.5_FEH-0.0_T1000.gz}} UPDATED! Thursday August 22 
 +  - {{:​W05_N131K_RG8.5_FEH-0.0_T12000.gz}} 
 +  - {{:​data:​W05-N131K_RG15_FEH-0.0.T10.gz}} NEW! Tuesday August 20 
 +  - {{:​data:​W05-N131K_RG15_FEH-0.0.T100.gz}} NEW! Tuesday August 20 
 +  - {{:​data:​W05-N131K_RG15_FEH-0.0.T1000.gz}} NEW! Tuesday August 20 
 +  - {{:​W05_N131K_RG15_FEH-0.0_T12000.gz}} 
 + 
 +Questions are the same as in Challenge 2, and in addition: 
 +  - Is the presence ​of the tidal field affecting the velocity anisotropy in the outer parts
 +  - Can the mass segregation be reproduced by multi-mass King models?  
 + 
 + ​Example of the velocity dispersion difference of different mass components:​ 
 +{{:​data:​sig2ratio.png?​250}} 
 + 
 +Different models to fit: 
 +  - $f_\nu$ 
 +  - Multi-mass King 
 +  - Discrete ​"Jeans like" ​modelling 
 +  - DF fitting (Mark W?) 
 + 
 +==== Results: ==== 
 +Using all stars: 
 +^ ^ ^ ^  All Stars ^^^^ 1000 stars^^^^ 
 +^ Cluster ^ Snapshot ^ Method ​            ​^$M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$ ^ $M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$^ 
 +|1 | 1 | Isotropic King   ​| ​ |         | |           |  
 +|  | 1 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 1 | $f_\nu$ ​             |  |           | |           |  
 +|  | 1 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|1 | 2 | Isotropic King   ​| ​ |         | |           |  
 +|  | 2 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 2 | $f_\nu$ ​             |  |           | |           |  
 +|  | 2 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|1 | 3 | Isotropic King   ​| ​ |         | |           |  
 +|  | 3 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 3 | $f_\nu$ ​             |  |           | |           |  
 +|  | 3 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|1 | 4 | Isotropic King   ​| ​ |         | |           |  
 +|  | 4 | Multimass Michie King | $2.118$ |  | $11.353$ |  |   
 +|  | 4 | $f_\nu$ ​             |  |           | |           |  
 +|  | 4 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 1 | Isotropic King   ​| ​ |         | |           |  
 +|  | 1 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 1 | $f_\nu$ ​             |  |           | |           |  
 +|  | 1 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 2 | Isotropic King   ​| ​ |         | |           |  
 +|  | 2 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 2 | $f_\nu$ ​             |  |           | |           |  
 +|  | 2 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 3 | Isotropic King   ​| ​ |         | |           |  
 +|  | 3 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 3 | $f_\nu$ ​             |  |           | |           |  
 +|  | 3 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 4 | Isotropic King   ​| ​ |         | |           |  
 +|  | 4 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 4 | $f_\nu$ ​             |  |           | |           |  
 +|  | 4 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 + 
 +Plots 
 +^ Cluster ​ ^ Plots ^ 
 +|1 | 1 | Isotropic King vs $f_\nu$ | | 
 +|  | 1 | Multimass Michie King   | |   
 +|  | 1 | Discrete modelling ​       | |  
 +|1 | 2 | Isotropic King vs $f_\nu$ | | 
 +|  | 2 | Multimass Michie King   | |   
 +|  | 2 | Discrete modelling ​       | |  
 +|1 | 3 | Isotropic King vs $f_\nu$ | | 
 +|  | 3 | Multimass Michie King   | |   
 +|  | 3 | Discrete modelling ​       | |  
 +|1 | 4 | Isotropic King vs $f_\nu$ | | 
 +|  | 4 | Multimass Michie King   ​|{{:​data:​t3c1.png?​250}} |   
 +|  | 4 | Discrete modelling ​       | |  
 +|2 | 1 | Isotropic King vs $f_\nu$ | | 
 +|  | 1 | Multimass Michie King   | |   
 +|  | 1 | Discrete modelling ​       | |  
 +|2 | 2 | Isotropic King vs $f_\nu$ | | 
 +|  | 2 | Multimass Michie King   | |   
 +|  | 2 | Discrete modelling ​       | |  
 +|2 | 3 | Isotropic King vs $f_\nu$ | | 
 +|  | 3 | Multimass Michie King   | |   
 +|  | 3 | Discrete modelling ​       | |  
 +|2 | 4 | Isotropic King vs $f_\nu$ | | 
 +|  | 4 | Multimass Michie King   | |   
 +|  | 4 | Discrete modelling ​       | |  
 + 
 +==== Results: ==== 
 +Velocity dispersion for different mass species: the multi-mass King models assume that the product $m\sigma_K^2$= constant. The parameters $\sigma_K$ is not exactly the velocity dispersion.  
tests/collision/gc1_archive.txt · Last modified: 2015/09/01 11:33 by v.henault-brunet