This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
tests:collision:gc1_archive [2014/10/22 15:00] v.henault-brunet |
tests:collision:gc1_archive [2015/09/01 10:33] v.henault-brunet |
||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Gaia Challenge 1 ====== | + | ====== GC I ====== |
- | + | ===== Challenge 1: Equal mass clusters in a tidal field ===== | |
- | ==== Preliminary results from Gaia Challenge 1 workshop ==== | + | |
- | + | ||
- | === Challenge 1: Equal mass clusters in a tidal field ==== | + | |
^ ^ ^ All Stars ^^^^ 1000 stars^^^^ | ^ ^ ^ All Stars ^^^^ 1000 stars^^^^ | ||
Line 27: | Line 24: | ||
| | Anisotropic Michie King | {{:data:t1c2.png?250}} | | | | Anisotropic Michie King | {{:data:t1c2.png?250}} | | ||
|3 | Isotropic King vs $f_\nu$ | {{:data:collisional_Ch1_3.png?250}}| | |3 | Isotropic King vs $f_\nu$ | {{:data:collisional_Ch1_3.png?250}}| | ||
- | | | Anisotropic Michie King | {{:data:t1c3.png?250}} | | + | | | Anisotropic Michie King | {{:data:t1c3.png?250}} | |
+ | | ||
+ | ===== Challenge 2: Isolated models with stellar evolution ===== | ||
+ | Active participants: Alice Zocchi, Antonio Sollima, Matt Walker, , Laura Watkins, Glenn van de Ven, Pascal Steger? | ||
+ | How important is the effect of mass segregation? | ||
+ | - How correct is the assumption of energy equipartition (i.e. multi-mass King models)? | ||
+ | - How different are the fits when considering: 1.) all stars, 2.) only visible stars | ||
+ | - Is it better to consider luminosity weighted profiles, or number density profiles? | ||
+ | - How much can we do with 2 velocity components instead of 1 (i.e. with Gaia data)? | ||
- | ===== Other possible challenges ===== | ||
- | ==== Pal 5 model from Andreas Kuepper in streams section ==== | + | ==== Description of the models: ==== |
- | Same analyses as in Challenge 2 and 3, but with cluster on eccentric orbit and "polluting" stars from tidal tails. The models posted in the streams section were not evolved with stellar evolution and for a Hubble time, but Andreas sent me files for that. Will upload them if there is interest. | + | (Based on simulations ran by Mark Gieles, not published)\\ |
+ | Here we consider 2 clusters: | ||
- | ==== Models with initial rotation ==== | + | - IC: Cored gamma/eta model, N = 1e5, Kroupa (2001) mass function between 0.1-100 Msun. |
- | Different models with angular momentum are within the group: collapsing spheres, cold fractal collapse, cluster mergers. | + | - No primordial binaries, no central black hole, no tidal. |
+ | - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002) | ||
+ | - Two values for the metallicity of the stars: [Fe/H] = -2.0 and 0.0 (solar) | ||
+ | Below are 2 snapshots at an age of roughly 12 Gyr. The columns are: | ||
- | === Collapse of homogeneous spheres with angular momentum === | + | ^ $m$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^ $\log T_{EFF}$ ^ $M_{bol}$ ^ KSTAR ^ |
- | Below snapshots of 3 cold(ish) collapses of homogeneous spheres with angular momentum. Initial virial ratios and angular momentum were taken from the 3 models described in Gott (1972). The models contain 2e5 stars, a Kroupa IMF between 0.1 and 100 Msun and snapshots are at t=30 [NBODY]. The amount of rotation is quantified with Peebles $\lambda$ parameter in the title: | + | | [Msun] | [PC] ||| [km s-1] ||| [K] |[MAG]| |
- | - {{:data:rot_collapse_lam0.127.gz}} NEW! Tuesday August 20 | + | KSTAR is the stellar type and can be between 0 and 22 and the meanings are given below in the Appendix. |
- | - {{:data:rot_collapse_lam0.168.gz}} NEW! Tuesday August 20 | + | |
- | - {{:data:rot_collapse_lam0.212.gz}} NEW! Tuesday August 20 | + | |
- | [[http://personal.ph.surrey.ac.uk/~mg0033/movies/lam212.avi|visualisation]] | + | |
+ | - {{:ETA3_SEV_N100K_ISO_FEH-0.0_T12656.gz}} | ||
+ | - {{:ETA3_SEV_N100K_ISO_FEH-2.0_T12892.gz}} | ||
- | === Mergers === | + | Cluster properties: |
- | Merger between 2 clusters of equal mass, equal containing 1e5 stars, a Kroupa IMF between 0.1 and 100 Msun. The initial orbit of the cluster pair had zero energy and different angular momentum. The | + | |
- | - {{:data:rot_merger_lam0.128.gz}} NEW! Tuesday August 20 | + | |
- | For both collapse and mergers collapse contain: | + | ^ Cluster ^ Mass ^ Radii ^^^^ rms velocities^^^^ |
+ | | | |$r_{\rm h}$(3D,M)|$r_{\rm h}$(2D,L)|$r_{\rm h}$(2D,M)|$r_{\rm h}$(2D,N)|$v_{\rm rms}$|$v_{\rm rms}$(Giants)| | ||
+ | | |[$M_\odot$] | [pc] | [pc] | [pc] | [pc] |[km/s]|[km/s]| | ||
+ | |1 |$3.34\times10^4$| 9.73 | 3.33 | 7.27 | 10.0 | 2.39 | 2.52| | ||
+ | |2 |$3.33\times10^4$| 10.9 | 4.71 | 8.20 | 11.3 | 2.30 | 2.67| | ||
- | ^ $M$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^ | + | Density distribution for cluster 2: {{:data:collisional_rho.png?250}} |
- | | [$M_\odot$] | [NBODY] ||| [NBODY] ||| | + | |
- | === Collapse of non-homogeneous spheres with angular momentum === | + | ==== (PRELIMINARY) RESULTS: ==== |
- | (Based on simulations ran by Anna Lisa Varri, see [[http://adsabs.harvard.edu/abs/2013AAS...22211703G|Ref1 ]] [[http://adsabs.harvard.edu/abs/2013AAS...22211702T|Ref2]]) | + | ^ ^ ^ All Stars ND ^^^ All Stars Mass^^^ All Stars Lum^^^ |
+ | ^ Cluster ^ Method ^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$R_{\rm h}$ | ||
+ | |1 | isotropic King | $3.17*10^4$ | $11.76$ | $8.67$ | $3.03*10^4$ | $9.06$ | $6.66$ | $3.07*10^4$ | $8.63$ | $6.39$ | | ||
+ | | | Multi-mass King | | | | | | ||
+ | | | $f_\nu$ | $3.80*10^4$ | $12.88$ | $9.66$ | $3.54*10^4$ | $9.00$ | $6.73$ | $3.08*10^4$ | $3.31$ | $2.48$ | | ||
+ | | | Parametric Jeans | | | | | | ||
+ | | | Discrete Jeans | | | | | | ||
+ | |2 | Isotropic King | $3.07*10^4$ | $14.27$ | $10.55$ | $2.72*10^4$ | $11.69$ | $8.32$ | $2.93*10^4$ | $11.13$ | $8.19$ | | ||
+ | | | Multi-mass King | | | | | | ||
+ | | | $f_\nu$ | $3.71*10^4$ | $14.66$ | $11.03$ | $3.66*10^4$ | $11.07$ | $8.26$ | $3.30*10^4$ | $6.08$ | $4.50$ | | ||
+ | | | Parametric Jeans | | | | | | ||
+ | | | Discrete Jeans | | | | | | ||
- | Below snapshots of two cold(ish) collapses of isolated spheres with N=64k, equal mass stars, non-homogeneous initial density distribution (fractal dimension D = 2.8, 2.4, as in the file name), and approximate solid-body rotation. The configurations are characterized by the same **initial** values of virial ratio and global angular momentum as in the homogeneous case #3 (with $\lambda=0.212$). The simulations have been performed with [[http://www.sns.ias.edu/~starlab/|STARLAB]] and the snapshots are taken at T=20 [NBODY]. | ||
- | - {{:data:rot_collapse_fracd2.4.gz}} NEW! Tuesday August 20 | ||
- | - {{:data:rot_collapse_fracd2.8.gz}} NEW! Tuesday August 20 | ||
- | The file header contains: N, T, coordinates and velocities of the center of mass. The file format is as follow: | + | ===== Challenge 3: Clusters in tidal fields with stellar evolution ===== |
+ | (Simulations ran and kindly made available by Holger Baumgardt)\\ | ||
- | ^ $ID$ ^ $M$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^ | + | Here we consider 2 clusters which are slightly more realistic: |
- | | | [NBODY] | [NBODY] ||| [NBODY] ||| | + | |
+ | - IC: King (1966) W_0 = 5 model, N = 131072, Kroupa (2001) mass function between 0.1-15 Msun (no black-holes). | ||
+ | - No primordial binaries, no central black hole, circular orbit in logarithmic halo with V = 220 km/s. | ||
+ | - Z = 0.001 | ||
+ | - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002) | ||
+ | - Two Galactocentric radii: 8.5 kpc and 15 kpc. | ||
- | ==== More ideas (but no mock data for these yet) ==== | ||
- | - What is the effect of binary stars? | + | Below are 2 snapshots at an age of roughly 10 Myr, 100 Myr, 1Gyr and 12 Gyr. The columns are the same as in Challenge 2. |
- | - Is there a dynamical "smoking gun" for an intermediate mass black hole? | + | |
- | | + | - {{:data:W05_N131K_RG8.5_FEH-0.0_T10.gz}} UPDATED! Thursday August 22 |
+ | - {{:data:W05_N131K_RG8.5_FEH-0.0_T100.gz}} UPDATED! Thursday August 22 | ||
+ | - {{:data:W05_N131K_RG8.5_FEH-0.0_T1000.gz}} UPDATED! Thursday August 22 | ||
+ | - {{:W05_N131K_RG8.5_FEH-0.0_T12000.gz}} | ||
+ | - {{:data:W05-N131K_RG15_FEH-0.0.T10.gz}} NEW! Tuesday August 20 | ||
+ | - {{:data:W05-N131K_RG15_FEH-0.0.T100.gz}} NEW! Tuesday August 20 | ||
+ | - {{:data:W05-N131K_RG15_FEH-0.0.T1000.gz}} NEW! Tuesday August 20 | ||
+ | - {{:W05_N131K_RG15_FEH-0.0_T12000.gz}} | ||
+ | |||
+ | Questions are the same as in Challenge 2, and in addition: | ||
+ | - Is the presence of the tidal field affecting the velocity anisotropy in the outer parts? | ||
+ | - Can the mass segregation be reproduced by multi-mass King models? | ||
+ | |||
+ | Example of the velocity dispersion difference of different mass components: | ||
+ | {{:data:sig2ratio.png?250}} | ||
+ | |||
+ | Different models to fit: | ||
+ | - $f_\nu$ | ||
+ | - Multi-mass King | ||
+ | - Discrete "Jeans like" modelling | ||
+ | - DF fitting (Mark W?) | ||
+ | |||
+ | ==== Results: ==== | ||
+ | Using all stars: | ||
+ | ^ ^ ^ ^ All Stars ^^^^ 1000 stars^^^^ | ||
+ | ^ Cluster ^ Snapshot ^ Method ^$M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$ ^ $M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$^ | ||
+ | |1 | 1 | Isotropic King | | | | | | ||
+ | | | 1 | Multimass Michie King | | | | | | ||
+ | | | 1 | $f_\nu$ | | | | | | ||
+ | | | 1 | Discrete modelling | | | | | | ||
+ | |1 | 2 | Isotropic King | | | | | | ||
+ | | | 2 | Multimass Michie King | | | | | | ||
+ | | | 2 | $f_\nu$ | | | | | | ||
+ | | | 2 | Discrete modelling | | | | | | ||
+ | |1 | 3 | Isotropic King | | | | | | ||
+ | | | 3 | Multimass Michie King | | | | | | ||
+ | | | 3 | $f_\nu$ | | | | | | ||
+ | | | 3 | Discrete modelling | | | | | | ||
+ | |1 | 4 | Isotropic King | | | | | | ||
+ | | | 4 | Multimass Michie King | $2.118$ | | $11.353$ | | | ||
+ | | | 4 | $f_\nu$ | | | | | | ||
+ | | | 4 | Discrete modelling | | | | | | ||
+ | |2 | 1 | Isotropic King | | | | | | ||
+ | | | 1 | Multimass Michie King | | | | | | ||
+ | | | 1 | $f_\nu$ | | | | | | ||
+ | | | 1 | Discrete modelling | | | | | | ||
+ | |2 | 2 | Isotropic King | | | | | | ||
+ | | | 2 | Multimass Michie King | | | | | | ||
+ | | | 2 | $f_\nu$ | | | | | | ||
+ | | | 2 | Discrete modelling | | | | | | ||
+ | |2 | 3 | Isotropic King | | | | | | ||
+ | | | 3 | Multimass Michie King | | | | | | ||
+ | | | 3 | $f_\nu$ | | | | | | ||
+ | | | 3 | Discrete modelling | | | | | | ||
+ | |2 | 4 | Isotropic King | | | | | | ||
+ | | | 4 | Multimass Michie King | | | | | | ||
+ | | | 4 | $f_\nu$ | | | | | | ||
+ | | | 4 | Discrete modelling | | | | | | ||
+ | |||
+ | Plots | ||
+ | ^ Cluster ^ Plots ^ | ||
+ | |1 | 1 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 1 | Multimass Michie King | | | ||
+ | | | 1 | Discrete modelling | | | ||
+ | |1 | 2 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 2 | Multimass Michie King | | | ||
+ | | | 2 | Discrete modelling | | | ||
+ | |1 | 3 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 3 | Multimass Michie King | | | ||
+ | | | 3 | Discrete modelling | | | ||
+ | |1 | 4 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 4 | Multimass Michie King |{{:data:t3c1.png?250}} | | ||
+ | | | 4 | Discrete modelling | | | ||
+ | |2 | 1 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 1 | Multimass Michie King | | | ||
+ | | | 1 | Discrete modelling | | | ||
+ | |2 | 2 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 2 | Multimass Michie King | | | ||
+ | | | 2 | Discrete modelling | | | ||
+ | |2 | 3 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 3 | Multimass Michie King | | | ||
+ | | | 3 | Discrete modelling | | | ||
+ | |2 | 4 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 4 | Multimass Michie King | | | ||
+ | | | 4 | Discrete modelling | | | ||
+ | |||
+ | ==== Results: ==== | ||
+ | Velocity dispersion for different mass species: the multi-mass King models assume that the product $m\sigma_K^2$= constant. The parameters $\sigma_K$ is not exactly the velocity dispersion. |