User Tools

Site Tools


tests:collision:gc1_archive

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
tests:collision:gc1_archive [2014/10/22 15:09]
v.henault-brunet
tests:collision:gc1_archive [2015/09/01 10:33] (current)
v.henault-brunet
Line 1: Line 1:
-====== ​Results from Gaia Challenge 1 workshop ​======+====== ​GC I ======
  
-==== Challenge 1: Equal mass clusters in a tidal field =====+===== Challenge 1: Equal mass clusters in a tidal field =====
  
 ^ ^ ^  All Stars ^^^^ 1000 stars^^^^ ^ ^ ^  All Stars ^^^^ 1000 stars^^^^
Line 24: Line 24:
 |  | Anisotropic Michie King   | {{:​data:​t1c2.png?​250}} |  ​ |  | Anisotropic Michie King   | {{:​data:​t1c2.png?​250}} |  ​
 |3 | Isotropic King vs $f_\nu$ |   ​{{:​data:​collisional_Ch1_3.png?​250}}| ​ |3 | Isotropic King vs $f_\nu$ |   ​{{:​data:​collisional_Ch1_3.png?​250}}| ​
-|  | Anisotropic Michie King   | {{:​data:​t1c3.png?​250}} |  +|  | Anisotropic Michie King   | {{:​data:​t1c3.png?​250}} |    
  
 +  ​
 +===== Challenge 2: Isolated models with stellar evolution =====
 +Active participants:​ Alice Zocchi, Antonio Sollima, Matt Walker, ,  Laura Watkins, Glenn van de Ven, Pascal Steger?
  
 +How important is the effect of mass segregation?​
  
 +  - How correct is the assumption of energy equipartition (i.e. multi-mass King models)?
 +  - How different are the fits when considering:​ 1.) all stars, 2.) only visible stars
 +  - Is it better to consider luminosity weighted profiles, or number density profiles?
 +  - How much can we do with 2 velocity components instead of 1 (i.e. with Gaia data)?
  
-===== Other possible challenges ===== 
  
-==== Pal 5 model from Andreas Kuepper in streams section ​====+==== Description of the models: ​====
  
-Same analyses as in Challenge 2 and 3but with cluster on eccentric orbit and "​polluting"​ stars from tidal tails. The models posted in the streams section were not evolved with stellar evolution and for a Hubble time, but Andreas sent me files for that. Will upload them if there is interest.+(Based on simulations ran by Mark Gieles, not published)\\ 
 +Here we consider 2 clusters:
  
-==== Models with initial rotation ==== +  - IC: Cored gamma/eta model, N 1e5, Kroupa (2001) mass function between 0.1-100 Msun. 
-Different models with angular momentum are within the group: collapsing spherescold fractal collapsecluster mergers+  - No primordial binariesno central black holeno tidal. 
 +  - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002) 
 +  - Two values for the metallicity of the stars: [Fe/H] = -2.0 and 0.0 (solar)
  
 +Below are 2 snapshots at an age of roughly 12 Gyr. The columns are:
  
-=== Collapse of homogeneous spheres with angular momentum === +^ $m$    ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^ $\log T_{EFF}$ ^ $M_{bol}$ ^ KSTAR ^ 
-Below snapshots of 3 cold(ish) collapses of homogeneous spheres with angular momentum. Initial virial ratios and angular momentum were taken from the 3 models described in Gott (1972). The models contain 2e5 stars, a Kroupa IMF between 0.1 and 100 Msun and snapshots are at t=30 [NBODY]. The amount of rotation is quantified with Peebles $\lambda$ parameter in the title: ​+| [Msun] | [PC|||  [km s-1]  ||| [K] |[MAG]|
  
-  - {{:​data:​rot_collapse_lam0.127.gz}} NEW! Tuesday August 20 +KSTAR is the stellar type and can be between 0 and 22 and the meanings are given below in the Appendix.
-  - {{:​data:​rot_collapse_lam0.168.gz}} NEW! Tuesday August 20 +
-  - {{:​data:​rot_collapse_lam0.212.gz}} NEW! Tuesday August 20  +
-[[http://​personal.ph.surrey.ac.uk/​~mg0033/​movies/​lam212.avi|visualisation]]+
  
 +  - {{:​ETA3_SEV_N100K_ISO_FEH-0.0_T12656.gz}}
 +  - {{:​ETA3_SEV_N100K_ISO_FEH-2.0_T12892.gz}} ​
  
-=== Mergers === +Cluster properties:
-Merger between 2 clusters of equal mass, equal containing 1e5 stars, a Kroupa IMF between 0.1 and 100 Msun. The initial orbit of the cluster pair had zero energy and different angular momentum. The  +
-  - {{:data:​rot_merger_lam0.128.gz}} NEW! Tuesday August 20+
  
-For both collapse and mergers collapse contain:+^ Cluster ^ Mass      ^ Radii ^^^^ rms velocities^^^^ 
 +|    | |$r_{\rm h}$(3D,​M)|$r_{\rm h}$(2D,​L)|$r_{\rm h}$(2D,​M)|$r_{\rm h}$(2D,​N)|$v_{\rm rms}$|$v_{\rm rms}$(Giants)| 
 +|    |[$M_\odot$] ​    ​| ​     [pc]       ​| ​    ​[pc] ​       | [pc]    | [pc] |[km/​s]|[km/​s]| 
 +|1   ​|$3.34\times10^4$| 9.73            | 3.33            | 7.27    | 10.0 | 2.39 | 2.52| 
 +|2   ​|$3.33\times10^4$| 10.9            | 4.71            | 8.20    | 11.3 | 2.30 | 2.67|
  
-^ $M$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^  +Density distribution for cluster 2: {{:​data:​collisional_rho.png?​250}}
-| [$M_\odot$] ​ | [NBODY] |||    [NBODY] ​  ​||| ​       ​+
  
-=== Collapse of non-homogeneous spheres with angular momentum ​===+==== (PRELIMINARY) RESULTS: ====
  
-(Based on simulations ran by Anna Lisa Varri, see [[http://​adsabs.harvard.edu/​abs/​2013AAS...22211703G|Ref1 ]] [[http://​adsabs.harvard.edu/​abs/​2013AAS...22211702T|Ref2]])+^ ^ ^  All Stars ND ^^^ All Stars Mass^^^ All Stars Lum^^^ 
 +^ Cluster ^ Method ​            ​^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$R_{\rm h}$ 
 +|1 | isotropic King            | $3.17*10^4$ ​ | $11.76$ | $8.67$ | $3.03*10^4$ | $9.06$ $6.66$ | $3.07*10^4$ | $8.63$ | $6.39$ |  
 +|  | Multi-mass King           ​| ​  ​| ​          ​| ​   |           ​| ​  
 +|  | $f_\nu$ ​                  | $3.80*10^4$ ​ | $12.88$ | $9.66$ | $3.54*10^4$ | $9.00$ | $6.73$ | $3.08*10^4$ | $3.31$ | $2.48$ | 
 +|  | Parametric Jeans          |   ​| ​          ​| ​   |           |  
 +|  | Discrete Jeans            |   ​| ​          ​| ​   |           |  
 +|2 | Isotropic King            | $3.07*10^4$ ​ | $14.27$ | $10.55$ | $2.72*10^4$ | $11.69$ | $8.32$ | $2.93*10^4$ | $11.13$ | $8.19$ | 
 +|  | Multi-mass ​ King          |   ​| ​          ​| ​   |           ​| ​  
 +|  | $f_\nu$ ​                  | $3.71*10^4$ | $14.66$ | $11.03$ | $3.66*10^4$ | $11.07$ | $8.26$ | $3.30*10^4$ | $6.08$ | $4.50$ | 
 +|  | Parametric Jeans          |   ​| ​          ​| ​   |           |  
 +|  | Discrete Jeans            |   ​| ​          ​| ​   |           
  
-Below snapshots of two cold(ish) collapses of isolated spheres with N=64k, equal mass stars, non-homogeneous initial density distribution (fractal dimension D = 2.8, 2.4, as in the file name), and approximate solid-body rotation. The configurations are characterized by the same **initial** values of virial ratio and global angular momentum as in the homogeneous case #3 (with  $\lambda=0.212$). The simulations have been performed with [[http://​www.sns.ias.edu/​~starlab/​|STARLAB]] and the snapshots are taken at T=20 [NBODY]. 
  
-   - {{:​data:​rot_collapse_fracd2.4.gz}} NEW! Tuesday August 20 
-   - {{:​data:​rot_collapse_fracd2.8.gz}} NEW! Tuesday August 20 
  
-The file header containsN, T, coordinates ​and velocities of the center of mass. The file format is as follow:+===== Challenge 3Clusters in tidal fields with stellar evolution ===== 
 +(Simulations ran and kindly made available by Holger Baumgardt)\\
  
-^ $ID$ ^ $M$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^  +Here we consider 2 clusters which are slightly more realistic:
-|  | [NBODY] ​ | [NBODY] |||    [NBODY] ​  ​||| ​       ​+
  
 +  - IC: King (1966) W_0 = 5 model, N = 131072, Kroupa (2001) mass function between 0.1-15 Msun (no black-holes).
 +  - No primordial binaries, no central black hole, circular orbit in logarithmic halo with V = 220 km/s.
 +  - Z = 0.001
 +  - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002)
 +  - Two Galactocentric radii: 8.5 kpc and 15 kpc.
  
-==== More ideas (but no mock data for these yet) ==== 
  
-  ​What is the effect ​of binary stars+Below are 2 snapshots at an age of roughly 10 Myr, 100 Myr, 1Gyr and 12 Gyr. The columns are the same as in Challenge 2. 
-  - Is there a dynamical ​"smoking gun" ​for an intermediate mass black hole?  + 
-  ​+  ​{{:​data:​W05_N131K_RG8.5_FEH-0.0_T10.gz}} UPDATED! Thursday August 22 
 +  - {{:​data:​W05_N131K_RG8.5_FEH-0.0_T100.gz}} UPDATED! Thursday August 22 
 +  - {{:​data:​W05_N131K_RG8.5_FEH-0.0_T1000.gz}} UPDATED! Thursday August 22 
 +  - {{:​W05_N131K_RG8.5_FEH-0.0_T12000.gz}} 
 +  - {{:​data:​W05-N131K_RG15_FEH-0.0.T10.gz}} NEW! Tuesday August 20 
 +  - {{:​data:​W05-N131K_RG15_FEH-0.0.T100.gz}} NEW! Tuesday August 20 
 +  - {{:​data:​W05-N131K_RG15_FEH-0.0.T1000.gz}} NEW! Tuesday August 20 
 +  - {{:​W05_N131K_RG15_FEH-0.0_T12000.gz}} 
 + 
 +Questions are the same as in Challenge 2, and in addition: 
 +  - Is the presence ​of the tidal field affecting the velocity anisotropy in the outer parts
 +  - Can the mass segregation be reproduced by multi-mass King models?  
 + 
 + ​Example of the velocity dispersion difference of different mass components:​ 
 +{{:​data:​sig2ratio.png?​250}} 
 + 
 +Different models to fit: 
 +  - $f_\nu$ 
 +  - Multi-mass King 
 +  - Discrete ​"Jeans like" ​modelling 
 +  - DF fitting (Mark W?) 
 + 
 +==== Results: ==== 
 +Using all stars: 
 +^ ^ ^ ^  All Stars ^^^^ 1000 stars^^^^ 
 +^ Cluster ^ Snapshot ^ Method ​            ​^$M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$ ^ $M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$^ 
 +|1 | 1 | Isotropic King   ​| ​ |         | |           |  
 +|  | 1 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 1 | $f_\nu$ ​             |  |           | |           |  
 +|  | 1 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|1 | 2 | Isotropic King   ​| ​ |         | |           |  
 +|  | 2 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 2 | $f_\nu$ ​             |  |           | |           |  
 +|  | 2 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|1 | 3 | Isotropic King   ​| ​ |         | |           |  
 +|  | 3 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 3 | $f_\nu$ ​             |  |           | |           |  
 +|  | 3 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|1 | 4 | Isotropic King   ​| ​ |         | |           |  
 +|  | 4 | Multimass Michie King | $2.118$ |  | $11.353$ |  |   
 +|  | 4 | $f_\nu$ ​             |  |           | |           |  
 +|  | 4 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 1 | Isotropic King   ​| ​ |         | |           |  
 +|  | 1 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 1 | $f_\nu$ ​             |  |           | |           |  
 +|  | 1 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 2 | Isotropic King   ​| ​ |         | |           |  
 +|  | 2 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 2 | $f_\nu$ ​             |  |           | |           |  
 +|  | 2 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 3 | Isotropic King   ​| ​ |         | |           |  
 +|  | 3 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 3 | $f_\nu$ ​             |  |           | |           |  
 +|  | 3 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 +|2 | 4 | Isotropic King   ​| ​ |         | |           |  
 +|  | 4 | Multimass Michie King      |         | |   ​| ​          ​| ​  
 +|  | 4 | $f_\nu$ ​             |  |           | |           |  
 +|  | 4 | Discrete modelling ​       |   ​| ​          ​| ​          ​| ​          |  
 + 
 +Plots 
 +^ Cluster ​ ^ Plots ^ 
 +|1 | 1 | Isotropic King vs $f_\nu$ | | 
 +|  | 1 | Multimass Michie King   | |   
 +|  | 1 | Discrete modelling ​       | |  
 +|1 | 2 | Isotropic King vs $f_\nu$ | | 
 +|  | 2 | Multimass Michie King   | |   
 +|  | 2 | Discrete modelling ​       | |  
 +|1 | 3 | Isotropic King vs $f_\nu$ | | 
 +|  | 3 | Multimass Michie King   | |   
 +|  | 3 | Discrete modelling ​       | |  
 +|1 | 4 | Isotropic King vs $f_\nu$ | | 
 +|  | 4 | Multimass Michie King   ​|{{:​data:​t3c1.png?​250}} |   
 +|  | 4 | Discrete modelling ​       | |  
 +|2 | 1 | Isotropic King vs $f_\nu$ | | 
 +|  | 1 | Multimass Michie King   | |   
 +|  | 1 | Discrete modelling ​       | |  
 +|2 | 2 | Isotropic King vs $f_\nu$ | | 
 +|  | 2 | Multimass Michie King   | |   
 +|  | 2 | Discrete modelling ​       | |  
 +|2 | 3 | Isotropic King vs $f_\nu$ | | 
 +|  | 3 | Multimass Michie King   | |   
 +|  | 3 | Discrete modelling ​       | |  
 +|2 | 4 | Isotropic King vs $f_\nu$ | | 
 +|  | 4 | Multimass Michie King   | |   
 +|  | 4 | Discrete modelling ​       | |  
 + 
 +==== Results: ==== 
 +Velocity dispersion for different mass species: the multi-mass King models assume that the product $m\sigma_K^2$= constant. The parameters $\sigma_K$ is not exactly the velocity dispersion.  
tests/collision/gc1_archive.1413990574.txt.gz · Last modified: 2014/10/22 15:09 by v.henault-brunet